ACGAN Parameter Estimator

Estimate the number of trainable parameters for a simplified ACGAN architecture.

Generator Architecture

Defines a generator using Dense, Conv2DTranspose, and BatchNorm layers. Assumes upsampling via stride=2 ConvTranspose layers.

Input Dimensions

Initial Dense & Reshape

Initial Dense output units = Start H * Start W * Start Channels.

Upsampling Block 1 (ConvT + BN + ReLU)

Upsampling Block 2 (ConvT + BN + ReLU)

Final Layer (ConvT + Tanh)

Outputs the final image.

Discriminator Architecture

Defines a discriminator using Conv2D, Dense, and Embedding layers. Assumes downsampling via stride=2 Conv2D layers. Outputs predictions for image source (real/fake) and class label.

Input Dimensions

Downsampling Block 1 (Conv2D + LeakyReLU)

Downsampling Block 2 (Conv2D + LeakyReLU)

Flatten & Final Dense Layer

Image features are flattened after Conv blocks. This dense layer processes the flattened features before the output heads.

Estimated Parameters

Click 'Calculate Parameters' to see the estimated counts based on your defined architecture.

Scroll to Top